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Abstract. ZYiisopropylsilanethiol @LST.E’S, 1). easily prepared in 98% yield from HS and TIPSCI, is 
eflciently alkylated in a seleclive manner with 1” and 2” alkyl halides or tosylates through its 
potassium thiolate @cl to provide RSTIPS (31 in excellent ytelds Compound 3 provides a convenient 
source of allcanelhiols (41, unsymmelric~ diaUclj1 suljFdes fSI and thioacetak (61. 

As an important functionality, alkanethiols (mercaptans) are available from numerous 

synthetic routes, the simplest being from the reaction of metal hydrosulfides with alkyl 

halides.4 Unfortunately, sulfides or disulfides as well as elimination products are also 

normally observed in this process. These problems can be overcome using a variety of 

reagents which convert alkyl halides, tosylates. mesylates and even alcohols to the 

corresponding thiols. As an attractive alternative to such methods, we envisaged that 

through the simple conversion of &S to its triisopropylsilyl (TIPS) derivative 1, one of its 

reactive sites would be effectively blocked resulting in its clean monoalkylation. 

Subsequently, the intermediate alkyl silyl sulfides (e.g. 3) could be converted either to 

alkanethiols (4) or to unsymmetrical dialkyl sulfides (5). While literature precedence exists 

for each of the above steps, the overall reaction sequence has not been achievedb5-’ 
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1. LtBu 1. KII 
H2S - HSlW’S - 

2. TII’SCI 2. Iu( 

1 
y= Z-G 5 

5 
Recently, we have found that the triisopropyl substitution on silicon not only retards 

nucleophilic reactions at silicon. but also, greatly impedes reactions at adjacent centers.’ 

Consequently, we anticipated that TIPSCl. rather than less convenient silanethiol precursors 

(RSiH. R,SiNH,). could be used to prepare 1 because the steric bulk of the TIPS group 

would prevent disilathiane formation.’ Moreover, 1 and 3 were expected to have greater 

hydrolytic stabilities than their iess bulky counterparts, thereby facilitating the overall 

process.B.g while still permitting the desilylation of 8 w&h fluoride ion.* The simple 

preparation of 4 or 5 by this deprotonation/alkylation methodology presented an attractive 

alternative to the existing methods.’ 

Silanethiol 1 is available from LiSH and TlPSCl in essentially quantitative yield (9E%). 

It is stable to both an aqueous work-up and distillation and 

or SiO,).‘” By contrast, other conditions (R$Zl, NEb, H$?B)‘*~ 

25 “Cl. 
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even chromatography @O, 

result in no reaction (5 d, 
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Table 1. The Preparation of 3 from Alkyl Halides and Tosylates and 2. 

entry R M X time (h) 3 yield 

1 Et 

2 Et 
3 Et 
4 Et 

5 Et 

6 n-Bu 

7 n-Ott 

8 PhCH, 

9 PhCH, 

10 CH,=CHCH, 

11’ Br(CH,), 
12d -DU,- 
13 MeCHBr(CH,),- 

14 i-Pr 

15 -CHMe(CH,),- 

16’ -CHMe(CH,),- 

17’ -CHMeCH,MeCH- 
18”.’ -CHMeCH,MeCH- 

Li 

Na 

K 

K 

K 

K 

K 

K 

K 
K 

K 

K 

K 

K 

K 
K 

K 
K 

Br 24 

Br 6 

Br 6 

I 5 

OTS 22 

BP 3 

Br 6 

Cl 1 

Br 0.25 
Br 1 

Br 8 

Br 4 

Br 3 

OTS 4 

OTs 76 
Br 3 

OTs 24 
OTs 24 

a 100” 

a 94” 
a 91(100a) 

a 85 
a 91’ 

b 90 

C 91 

d 83 

d 88(100’) 
e 86 

f 73 

g 82 

h 92 

i 75 

I 89 
I 95 

k 16 
k 74 

a GC yield, f 5%. ’ BuBr was added at 25 T. ’ 2 equiv of 1,2-dibromoethane were used. d 2.4 equiv of 

TIPSSK were used. ’ DMF rather than THF was used as the reaction solvent III these cases. ’ A 1:l meso/dl 
mixture was employed which produced only the meso product. a A 72:28 me.so/dl mixture produced Sk as 

a 9O:lO meso/dl mixture. 

The imposing nature of the TIPS substitution can be 

appreciated by examining the MMX-generated structure for 1 

(Figure 1). 

To explore the chemical behavior of 1, the Li (2ah Na (2b) 

and K (2~) salts were prepared from Li(n-Bu), NaH and KH. 

respectively,” and allowed to react with EtBr in THF (cf: Table 1. 

entries l-3). These reactions were all very clean, producing 

TIPSSEt (3a) as the only detectable product. The potassium salt 

(2~). which proved to be particularly effective, was isolated as a ‘Qure ‘* (f-Pri3SiSH (MMXl. 

pure crystalline material (96%). Its reaction with representative alkyl halides and tosylates 

was found to produce 3 in excellent yields for the systems examined (Table l).” 

Allylic. benzylic and both 1” and 2” halides and tosylates are smoothly converted to 

3. We can contrast the rapid reaction of the potassium silanethiolate 2c with benzyl 

bromide (25 “C. 15 min) to the slower reactions reported for this substrate with related 
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lithium trialkylsilanethiolates5b (25 ‘C, 48 h). 

Moreover, by limiting the stoichiometry to I1 

equiv of 2c. a difunctional substrate is selectively 

monothiolated (entries 11 and 13) with lo-X 

groups reacting exclusively in the presence of 

their 2O counterparts (entry 13). Neither 

elimination nor disubstitution is observed. DMF 

proved superior to THF for the disubstitution of 

the reactants which contained one or more 2”- 

X sites. The disubstitution of the rneso ditosylate 

of 2,4-pentanediol is faster than its dl 

counterpart (entries 17.18). 

To demonstrate that the TIPS substitution 

provides both remarkable resistance toward 

hydrolysis as well as protection for the thiol 

moiety in Grignard reactions, 3h was allowed to 

F?3 1. ug 
* 

2. DzO 

90% 

3h Sb-dl 

F HO 

Q 0 
3Iz 

64% 

No2 

l.CnF/DMF 
. 

6h. 25% 

sj CH2(OMd2 
t 

02 

6a 

n H St1 

4b 

BF3-EE / CH2C12 

76% 

6b 

react with Mg, followed by a D,O quench, to afford 3b-d, (90?/6. 91% CHD at C-3). with 

no accompanying elimination products nor unreacted 3h being observable. Moreover, despite 

their remarkable stabilities, TIPS derivatives such as 3g and 3j cleanly provide 1,3- 

dithiolane 6a13 (2 h, 64% from MeOH, mp 76-79 “C) from pO,NC,H,C!HO and 1.3-dithiane 

6b14 (3 h, 76%) from methylal. respectively (BF,=EE (1.1 equiv. 25 “Cl). 

Desilylation of 3d (TBAF. 1 h. 2. Hz0 
25 “C)) and 3j (CsF, 6 h. 25 “C) 

followed by hydrolysis provides the 

corresponding mercaptans 4a (73%) - ” 

and 4b (7 1%). respectively. 
36 

Alternatively, the intermediate thiolate 

from 3d is alkylated in siiu with 

the addition of ally1 bromide (3h. 25 

“C) to provide TIPSF (72%) and the 

unsymmetrical sulfide Sa (76%). p ‘III’S 

which are easily separated (SiO,. se 

hexanes) and isolated as pure 

2. c1011,7B’ 

Bh. 25OC 

‘76% 

Sb 

compounds. A similar process with the allyllic derivative 3e produces isomerically pure ally1 

geranyl sulfide (5b, 76%). 

These studies establish that the TIPS group imparts a unique stability to silyl sulfides 

preventing their hydrolysis during aqueous work-up and from attack by Grignard reagents. 

However, as required, it can be removed under mild conditions to provide either 4 or 5. 
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